If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(8+5x^2)=352
We move all terms to the left:
4(8+5x^2)-(352)=0
We multiply parentheses
20x^2+32-352=0
We add all the numbers together, and all the variables
20x^2-320=0
a = 20; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·20·(-320)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*20}=\frac{-160}{40} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*20}=\frac{160}{40} =4 $
| 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | y=8(19)-20 | | u/5+6=-25.25 | | y=8(19)-20 | | (-7,4);m=7 | | y=8(19)-20 | | 7x+21=8x+69 | | (-7,4);m=7 | | u/5+6=-25.25 | | u/5+6=-25.25 | | 2s-8+5=-24 | | 2s-8+5=-24 | | 20(0)+4x=180 | | 2/n=n/5n+12 | | -2.1=v/7+20.3 | | -2.1=v/7+20.3 | | 2y+4(45-0.5y)=180 | | 3.1=-3.3+2w | | 3.1=-3.3+2w | | (2x+10)+(8x-20)=180 | | (2x+10)+(8x-20)=180 | | (2x+10)+(8x-20)=180 | | 7x+5+98=180 | | 7x+5+98=180 | | 7x+5+98=180 | | 7x+5+98=180 | | 7x+5+98=180 | | 8.8=2.6+2t |